CAREER: Connecting with the Future: Supporting Identity and Career Development in Post-Secondary Science and Engineering
The findings for Phase I: testing and refining of measures has been completed and the findings have been presented/published for the community of engineering educators. Briefly, our findings were that the measures of students future time perspective (FTPS, FTPSE, PI) are valid, reliable measures of the constructs they represent. The PFAES, however, required significant revision; we have completed the revisions and the revised survey may be of use to engineering educators.
The focus of Phase II is understanding the associations between students’ beliefs about the future and their motivation, approach to learning, and achievement. This work has been presented at national and international conferences for educational researchers and engineering educators. We have found that students who are focused on their futures are more likely to use active elaborative learning strategies in the classroom. The use of these strategies are also associated with students’ achievement outcomes. Additionally, we have generally found a positive correlation between students’ use of collaboration strategies and their achievement. In engineering courses, however, we have found that students who are excelling (i.e., receiving a grade of “A” in the course) are less likely to collaborate with their peers than students who do less well in the course (i.e., those receiving a grade of “B”), and students who are struggling are the least likely to collaborate with their peers. We expect that this may be related to students’ epistemological beliefs of students in engineering courses and we are testing that hypothesis in this year of the project.
Phase III of the project, the longitudinal analysis, has not yet been presented or published. However, preliminary analyses indicate that retention is predicted by both their future time perspective and their cumulative grade point average. In other words, it seems that students’ belief in the importance of considering the future when making decisions about the present affect whether they continue in engineering.
Husman, J., Lynch, C., Hilpert, J., and Duggan, M. A. (2007, June). Validating measures of future time perspective for engineering students: Steps toward improving engineering education. Paper presented at the American Society for Engineering Education Annual Conference and Exposition, Honolulu, HI.
Abstract
Over the past few years, researchers have amassed a substantial body of knowledge regarding how students think about their personal futures. They argue if we want to understand why students choose one career path over another, and why they choose to persevere or abandon that path, we must understand how students conceptualize their futures. This study was conducted to validate two measures of human thinking about the future in a sample of 171 engineering students: the Future Time Perspective Scale (FTPS) and the Perceived Instrumentality Scale (PI). The results of this investigation revealed that scores from the FTPS and PI measurement instruments can be used as evidence for reliable and valid interpretation of engineering students’ future time perspective. Factor and item analyses indicated all of the subscales were internally reliable, and evidence of convergent, discriminant, and predictive validity was found through correlational analyses with other established measures of motivation.
Husman, J., Hilpert, J., Lynch, C., Duggan, M. A., Kim, W., & Chung, W. (2007, August). Connecting With the Future: Measuring Future Time Perspective in Science and Engineering Students. Presented at the 2007 Bi-Annual Meeting of the European Association for Research on Learning and Instruction, Budapest, Hungary.
Abstract
Some of the most important steps students take toward an Engineering career are choosing the right coursework, experiences, and mentors to get them there. To help students choose career paths in Engineering, and persist in the face of inevitable difficulties and disappointments, we need to understand how they conceptualize their futures. The concepts and processes involved in this conceptualization make up a person’s future time perspective (FTP). To facilitate research in science and engineering contexts, valid measures of FTP need to be established. The goal of the study presented here is to present evidence of predictive and convergent validity of a measure of FTP. Eight hundred four undergraduate students, four hundred seventy-seven of which are engineering majors, were surveyed. Preliminary analysis indicates that two measures of FTP, the Future Time Perspective Scale (FTPS) and the Perceptions of Instrumentality Scale (PI) have moderate to strong reliability and construct validity. Additionally, both measures demonstrate the hypothesized relationships with strategy use and self-efficacy.
Husman, J., Lynch, C., Hilpert, J., Duggan, M. A.., Kim, W., & Chung, W. (2007, August). When learning seems (un)important: Future Time Perspective and post-secondary students’ self-regulatory strategy use. Presented at the 2007 Bi-Annual Meeting of the European Association for Research on Learning and Instruction, Budapest, Hungary.
Abstract
Research on post secondary students’ Future Time Perspective (FTP) has focused on both its dispositional (Shell & Husman, 2001) and situational (Simons, Dewitte, & Lens, 2000) aspects. This correlation study of 276 university students found that a linear combination of students’ situational and dispositional FTP accounted for 24% to 54% of the variance in their reported use of learning strategies. We also provide evidence that when coursework has obvious connection with students’ future goals, the relationship between FTP and use of learning strategies is stronger than when coursework is less instrumental. According to FTP theory students’ perceptions of instrumentality are a product of their dispositional tendency to find connections between the present and the future and the actual utility of an activity (Husman & Lens, 1999). The research discussed here provides some evidence for the proposed interaction between dispositional and situational aspects of FTP.
Husman, J., Hilpert, J., & Stump, G. (2008, March). Supporting identity and career development in post-secondary science and engineering. In B.W. Packard (Chair), Building cross-institution relationships for studying science identity: Perspectives from recent NSF-CAREER awardees, program officers, and scholar mentors. Symposium conducted at the meeting of the American Educational Research Association, New York, NY.
Abstract
Some of the most important steps students take toward a Science and Engineering (S & E) career are choosing the right coursework, experiences, and mentors to get them there. Research conducted at Arizona State University (ASU), has yielded a viable model of students’ FTP (Husman, Lynch, Hilpert & Duggan, 2007). During the 2006-2007 academic years, 107 students from an introductory engineering course and 287 students from a series of core mechanical and aerospace engineering courses were surveyed, along with 191 students from a geo-science course for non-majors. Analysis of data from both engineering populations showed that students with high dispositional FTP tended to espouse high endogenous PI for their engineering courses and, in turn, deployed more knowledge building skills. Examination of non-major students taking a geo-science course revealed that students with strong FTP and low endogenous PI were less likely to engage in active learning strategies. In the non-major population, connectedness functioned as a negative predictor of knowledge building. These findings were important steps in understanding the relationship between dispositional FTP and endogenous PI for students in both major and non-major courses in science and engineering. Taken together, they imply that students’ mental representations of their personal futures do influence their approach to learning in a particular class. The class, however, does have an influence. Our preliminary data suggests that students with strong dispositional FTP are more likely to engage in knowledge building study strategies if the content of a course aligns with their personal model of the future.
Stump, G., Hilpert, J., & Husman, J. (2008, March). Freshman students’ waning beliefs about math and science: Do directive instructors and academic success courses help? Poster session presented at the annual meeting of the American Educational Research Association, New York, NY.
Abstract
Freshman students enrolled in an academic skills course at a large public southwestern university were surveyed at the beginning and end of the fall semester about perceptions of their math and science courses. A dependent samples t-test revealed significant decreases in students’ endogenous perceptions of instrumentality, self-efficacy for learning course material, and self-efficacy for obtaining a satisfactory grade during their first semester in college. Additionally, bivariate correlations between computed change statistics revealed statistically significant positive associations between decrease in students’ self-efficacy, knowledge building strategies, and perceptions of teacher directedness, despite their enrollment in an academic skills-building course. Re-evaluation of content and placement of academic success courses within the freshman college student curriculum is considered.
Stump, G., Hilpert, J., Chung, W. T., & Husman, J. (2008, August) Constructivist learning and engineering: Relationship between student collaboration and grades. Paper presented at the annual meeting of the American Psychological Association, Boston, MA.
Abstract
The purpose of this study was to examine the effects of collaboration and self-efficacy on undergraduate engineering students’ achievement. Collaboration, knowledge building behaviors, self-efficacy, and perceptions of teacher directedness were measured, using previously published scales validated within the context of engineering education, in a sample of 150 Mechanical and Aerospace engineering students at a large southwestern university. The results indicated significant positive correlation between collaborative learning and course grade (r = .29) and self-efficacy and course grade (r = .44). The linear combination of collaboration and self-efficacy accounted for 22% of the variance in course grade. Collaborative learning remained a significant predictor of course grade over and above self-efficacy. Our results indicate that students who engage in collaboration with peers achieved at higher levels than those who did not. Opportunities for collaborative learning in engineering education may be beneficial to student’s active learning and academic achievement within a field where students view individual work and competition as the means to success.
Stump, G., Hilpert, J., Chung, W.T., Kim, W., & Husman, J. (2008, August). Females in mechanical and aerospace engineering: Collaboration, self-efficacy, and achievement. Paper presented at the International Conference on Motivation in Turku, Finland.
Abstract
This study examined differences in between male and female engineering students’ perceptions of self-efficacy, achievement, and amount of peer learning or collaboration. Five hundred twenty two students majoring in engineering participated in our study during the fall 2006, spring 2007, and fall 2007 semesters. Of that sample, eighty-seven males were randomly selected to match the number of female participants in order to compare gender differences. Results provided additional evidence for the improved academic status of women in current engineering courses. Although still underrepresented, our findings suggest that women enrolled in engineering courses are not statistically different from their male counterparts in achievement (course grade) or perceptions of their competence (self-efficacy), but that they do report using significantly more peer learning strategies (collaboration) than their male classmates. Additionally, across genders, students who received ‘B’s’ used far more collaboration or peer learning strategies than students who received ‘A’s’ in the course. Although the higher achieving students are less willing than their peers to collaborate, our data does indicate that most students do, to some extent, work with peers, even in a competitive engineering classroom environment.
Chung, W., Stump, G., Hilpert, J., Husman, J., Kim, W, & Lee, J. (2008, October). Addressing engineering educators’ concerns: Collaborative learning and achievement. Proceedings of the Frontiers In Engineering Conference; Saratoga Springs, NY.
Abstract
Recent calls for engineering education reform have included collaborative learning as a means to prepare students for future careers in engineering. The purpose of this study was to examine the effects of collaboration and self-efficacy on undergraduate engineering students’ achievement. The results indicated significant positive correlations between collaborative learning and course grade (r = .29) and self-efficacy and course grade (r = .44). The linear combination of collaboration and self-efficacy accounted for 22% of the variance in course grade. Collaborative learning remained a significant predictor of course grade over and above self-efficacy. The results showed that students engaging in collaboration with peers achieved at higher levels than those who did not. In a field where individual work and competition has traditionally been valued, opportunities for collaboration may be beneficial to students’ academic achievement.
Hilpert, J., Stump, G., Husman, J., & Kim, W. (2008, October). An exploratory factor analysis of the Pittsburgh freshman engineering attitudes survey. Proceedings of the Frontiers in Engineering Conference, Saratoga Springs, NY.
Abstract
The Pittsburgh Freshman Engineering Attitudes Survey (PFEAS) has become an important tool in engineering education for measuring students’ attitudes about engineering and their confidence in their abilities to achieve in the engineering classroom. Although different versions of the scale have been developed for students at different points in their educational careers, 28 of the items are equable across the various forms of the survey. The authors administered these items to a large sample (N = 372) of engineering majors at a large public university in the southwest. Item and factor analysis of the items revealed problems with the structural validity of the scale, and items and factors were removed based on theoretical and empirical justification. The remaining items produced a structurally valid three-factor solution. The authors found these factors were significantly correlated with student study strategies.
Lee, J., Stump, G., Hilpert, J., & Husman, J. (2009, April). Perception of instrumentality for required courses in an engineering curriculum: What difference does it make? Poster accepted for presentation at the annual meeting of the American Educational Research Association, San Diego, CA.
Abstract
This study examines differences in engineering students’ endogenous and exogenous instrumentality for two required courses within the engineering curriculum. The results indicated that engineering students have higher endogenous instrumentality than exogenous instrumentality for required engineering and math studies, and that they have higher endogenous and exogenous instrumentality for their math courses than their engineering courses. Additionally, endogenous PI was significantly predictive of students’ engagement in knowledge building behaviors to learn course content, while exogenous PI was not. Fostering engineering students’ perceptions of instrumentality for their coursework may be key to their strategic self-regulation for learning course material.
Stump, G., Hilpert, J., Husman, J., & Chung, W.T. (2009, April). Constructivist learning outcomes for students in engineering and non-major science courses. Poster accepted for presentation at the annual meeting of the American Educational Research Association, San Diego, CA.
Abstract
This study examined the effects of collaboration and gender on students’ course grade. Study participants were engineering students and students enrolled in a non-major science course. A 2x2 ANOVA revealed gender effects on collaboration within engineering major courses; further examination using a 2x3 ANOVA revealed gender effects on collaboration for engineering students who received As in the course. Multiple regression analysis showed that collaboration and self-efficacy were significant predictors of course grade for the combined sample; however, when the sample was divided by course type and gender, collaboration was a significant predictor of course grade for males only in the non-science major course.